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More about extremal animals* 

J. Brunvoll, B.N. Cyvin and S.J. Cyvin 

Division of Physical Chemistry, The University of Trondheim, 
N-7034 Trondheim-NTH, Norway 

The analysis of extremal hexanimals by Harary and Harborth (HH) is set in focus. 
The spiral walk used in this analysis is treated in some detail. Furthermore, the HH 
analysis is coupled with the phenomenon of circumscribing. The following theorem is 
proved: every hexanimal becomes extremal by sufficiently many circumscribings, if 
they can be executed. 

1. In t roduct ion 

This work could not have been accomplished without the fundamental analysis 
of extremeal animals by Harary and Harborth [1], in the following abbreviated to 
HH. In the present paper, only hexagonal animals (polyhexes, benzenoids, fusenes, 
etc. ) are treated; they consist of hexagonal cells (or hexagons). Such a hexagonal 
animal or hexanimal is characterized by a pair of  invariants, eg. (h, ni), where h is 
the number of cells and ni the number of internal vertices. Many other invariants 
of the hexanimal can be expressed in terms of the mentioned pair. Thus, another 
pair of  independent invariants is given by [2] 

( n ;  s )  = ( 4 h  - n i + 2;  2 h  - ni  + 4 ) .  (1) 

Here, n is used to denote the (total) number of vertices, while s is the number of 
vertices of degree two. This pair of invariants is especially significant inasmuch n 
and s also give the number of carbon atoms and hydrogens, respectively, in the 
polycyclic hydrocarbon which corresponds to the hexanimal in question. Accordingly, 
we shall identify the chemical formula CnHs with the symbol (n; s). 

An extremal hexanimal is defined by 

n i = (ni)ma x = 2h + 1 - [ (12h-  3)1/2]. (2) 

In other words, it is a hexanimal with the maximum number of internal vertices for 
a given number of ceils. The above relation [3] is a straightforward deduction from 
the very useful relations of the HH analysis [1]. Several other deductions of  this 
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type have been published [3-7], and especially in connection with the studies 
of C,,Hs isomers [8-14], where the HH analysis has been exploited to a great 
extent. 

The main result of the present work is a theorem about hexanimals deduced 
from eq. (2). It has far-reaching consequences in the studies of the CnHs hexanimal 
isomers, as is demonstrated by some examples. The phenomenon of circumscribing 
(see below) is crucial in parts of these studies, and is here coupled with the studies 
of extremal hexanimals. 

2. Spiral walk 

2.1. GENERAL 

The foundation of the analysis of HH [1] is the generation of extremal 
animals by adding cells in a spiral fashion, here referred to as the spiral walk. For 
hexanimals, it is illustrated in fig. 1. The spiral walk generates, obviously, one 

Fig. 1. Illustration of the spiral walk; the cell growth 
propagates according to the inscribed numerals. 

extremal hexanimal for each h value. Many species are missed by this procedure, 
since it is a fact that there exist numerous nonisomorphic hexanimals with n i = ( n i ) m a  x 

for given h values [4,9, 11,13-16]. However, also unique species exist for selected 
h values; they are the topic of the next section. 

2.2. CIRCULAR HEXANIMALS 

During the spiral walk, the addition of the cell No. 2 (cf. fig. 1) does not 
increase the number of internal vertices (ni). This is an edge effect which never 
happens again. In all the subsequent additions, ni increases either by one unit or two 
units. If the addition No. h + 1 increase ni by one or zero, then the preceding 
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extremal animal is a unique such system with h cells. It is called a circular 
hexanimal. The condition about zero includes benzene (h=  1) among the 
circular hexanimals. Loosely speaking, a circular hexanimal is produced whenever 
a whole round is completed during the spiral walk. In precise terms, this 
happens for 

[1 j 
h =  -i2 (t2 + 6 t + 1 2 )  ; t = 1 , 2 , 3 , 4  . . . . .  (3) 

This equation for the number of cells in circular hexanimals is based on the HH 
analysis [1] and easily obtained with the aid of a previous deduction [5]. A circular 
hexanimal may also be defined as the (unique) extremal hexanimal with the number 
of cells given by eq. (3). 

Another definition of a circular hexanimal, perhaps the most instructive one: 
a circular hexanimal is defined by having the maximum number of cells (h = hmax) 
for a given circumference (perimeter length) [14]. The circular hexanimals 
manifest themselves in six characteristic shapes. The significance of these shapes 
was at least known already by Balaban [17] in his studies of annulenes; this topic 
was recently revisited [6]. The same shapes re-appear among special coronoids 
called hollow hexagons [6,7,18,19]. Furthermore, each circular hexanimal is 
identified by its formula Chris, which belongs to a so-called one-isomer 
series. Also in this connection, the six characteristic shapes have been displayed 
[11,20,21]. The circular hexanimals form a subclass of the generalized hexagon- 
shaped hexanimals [22]. 

2.3. MODIFIED SPIRAL WALK 

Some extremal hexanimals, which are not generated by the ordinary spiral 
walk (fig. 1), are easily obtained by a simple modification. When a circular hexanimal 
with h cells is produced, add the cell No. h + 1 in a place which is not prescribed 
by the ordinary spiral walk, but also adds one internal vertex to the hexanimal. 
Example: to the circular hexanimal with (h, ni) = (5, 3), the sixth cell may be added 
in three ways so as to generate all the nonisomorphic extremal hexanimals characterized 
by (6, 4); see fig. 2. In the same way, the four existing nonisomorphic (9, 8) 
hexanimals are obtained (fig. 2), and the same for the two species of (11, 11). The 
method fails to produce all the nonisomorphic hexanimals when we come to the 
addition of one cell to the circular hexanimal with (h, n i )  = (12, 13). Then the spiral 
walk and its modification give the two species in the top row of  fig. 3, while those 
in the bottom row are missed. In order to go deeper into this problem, we turn to 
another principle of generating hexanimals, different from the spiral walk with 
modifications. 
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Fig. 2. Generation of all nonisomorphic extremal hexanimals with 
(a) h = 6 and (b) h = 9 by the ordinary spiral walk (fig. 1) for the 
species at the extreme left and the modified spiral walk for the others. 

Fig. 3. The four nonisomorphic extremal 
hexanimals with h = 13, n i = 14. 

3. Circumscribing 

3.1. GENERAL 

A hexanimal is said to be circumscribed when cells are added to all edges 
of the perimeter so that they form a closed (corona-condensed [23, 24]) single chain. 
In other words, the dualist [7, 22, 23, 25] of the added ceils is a cycle. The importance 
of circumscribing was realized at an early stage in the studies of C,,H~ isomers by 
Dias [26,27]. 
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An analytical result for circumscribing reads: if (n; s) is the formula for a 
hexanimal A, which can be circumscribed, then the formula for the circumscribed 
species, circum-A, becomes (n + 2s + 6; s + 6) [11]. Here, we need a result which 
is a little more advanced. Let a hexanimal A, which can be circumscribed k times, 
be characterized by (h, hi). Then the number of  cells (hk) and of  internal vertices 
( h i )  k, for the k-times circumscribed species, viz. k-circum-A, become 

h k = 3 k  2 + k ( 2 h - n  i+ l )+h ,  (4) 

(ni)t = 6k2 + 2k(2h - n i - 2) + n i . (5) 

Here, also k < 0 makes sense. Then I kl indicates the number of  excisings. An 
excising is by definition the opposite process of  circumscribing. 

3.2. CATACONDENSED HEXANIMALS 

As an introduction to the theorems in the next section, consider again fig. 3 
with the two hexanimals (bottom row) which are not accessible by the spiral walk, 
with or without modification. They are the two circumscribed h = 3 catacondensed 
(hi = 0) hexanimals. 

Now it is inferred: if  C is a catacondensed hexanimal with h cells and which 
can be circumscribed k times, then k-circum-C is an extremal animal for 

k > 1-~(4h2 - 1 2 h + 3 ) .  (6) 

Example: h =  4, k >  1; fig. 4 shows two extremal hexanimals out of  39 [11] with 
h = 34, obtained by double circumscribing of  selected catacondensed h = 4  
hexanimals. 

Fig. 4. Two extremal hexanimals with h = 34, n i = 48. 
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4. Two theorems 

4.1. INTRODUCTION 

It is known that not every hexanimal can be circumscribed [14]. Figure 5 
shows five out of  the ten unbranched catacondensed hexanimals [22,23]. Those in 
the top row (a) can be circumscribed k times without limitation; the species in the 

Fig. 5. Hexanimals which can be circumscribed 
(a) arbitxarily many times, (b) once, but not twice, 
and (c) which cannot be circumscribed at all. 

middle (b) is interesting inasmuch it can be circumscribed once, but not twice; 
finally, the two bottom species (c) cannot be circumscribed even once. The theorem 
in the next section is no contradiction to these properties. 

4.2. THEOREM 1 

Among the hexanimals characterized by a pair of  invariants (h, n i )  with 
arbitrary values (within the permitted limits [1]), there exists (at least) one species 
which can be circumscribed arbitrarily many times. 

4.3. PROOF OF THEOREM 1 

Construct a selected set of  hexanimals, one for each pair (h, ni) by the following 
principles. (i) Spiral walk (section 2); (ii) spiral walk up to a point where an added 
cell would increase rt i by two units, then add a cell which increases n i by one unit 
instead; (iii) annelate (i.e. add to a free edge) a catacondensed fragment  o f  
l = 1, 2, 3, 4 . . . .  cells to all the species (for h > 1) constructed under (i) and (ii). 

Here, the principles (i) and (ii) produce a hexanimal with the minimum of  
cells (h = hmin) for each n i = 0,  1, 2 ,  3 . . . . .  The principle (iii) produces hexanimals 
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with increasing number of cells, h + l, without affecting ni, thus filling out the rest 
for all the permitted (h, ni) combinations. 

The principle (i) produces invariably hexanimals which can be circumscribed 
arbitrarily many times. By taking proper precautions, this can always be accomplished 
also in the cases of (ii) and (iii), for instance in the following way. (ii) When adding 
the last cell, go one step backwards in relation to the direction of the spiral walk; 
(iii) choose a linear chain of l cells and annelate it to the free edge (or one of the 
free edges) as far as possible (reckoned along the perimeter) from the last added 
cell. 

Figure 6 illustrates the above principles. In the examples (a) and (c) therein, 
(i) + (iii) comes into operation; in (b), it is (ii) + (iii). The values of (hmi n, ni) are 
(11, 11), (12, 12) and (12, 13) in the three cases (a), (b) and (c), respectively. 

Fig. 6. Construction o f  hexanimals which can be  circumscribed arbitrarily 

many  t imes: (a) n i = 11, h = 11 + l; (b) n i = 12, h = 12 + l; (c) n i = 13, 
h = 12 + I. Here,  l is the number  o f  cells  in a s ingle  l inear chain.  

4.4. T H E O R E M  2 

Any hexanimal A characterized by (h, ni) becomes an extremal hexanimal 
when circumscribed sufficiently many times (if possible). 

This is our main theorem. Together with theorem 1 it is assured that it is 
always possible to choose A for an arbitrary pair (h, n i )  s o  that k-circum-A is 
extremal. It should be understood that there exists a critical minimum value, say 
x = kmm, for which x-circum-A is extremal, and all subsequent circumscribings 
(k > x) continue to generate extremal hexanimals. 

4.5. P R O O F  OF T H E O R E M  2 

Theorem 2 is proved by an analytical derivation of k and x in general. One 
simply has to substitute h and ni in eq. (2) by hk from (4) and (ni) k from (5), 
respectively. These substitutions yield 
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6k + 2h - ni + 1 = [31/2[12k 2 + 4 k ( 2 h -  n i + 1) + 4h - 1]1/2]. (7) 

After some manipulation, we obtained 

1 )2 
k > - i 2 [ ( 2 h - n  i - 1 2 h + 3 ] .  (8) 

Finally, one obtains the critical value of  x = kmi. as 

x=[l[(2h-ni)2-12h+15]J. (9) 

It may happen that x < 0. Then Ixl according to eq. (9) is meaningful as well 
and indicates the number of  excisings ("negative circumscribings"). 

5. Application of the main theorem 

5.1. C A T A C O N D E N S E D  H E X A N I M A L S  

It is seen that eq. (6) of  section 3.2 is the special case of  (8) for n i = 0. 

5.2. H E X A N I M A L S  W I T H  ONE I N T E R N A L  V E RTEX 

A hexanimal with n i = 1 is either phenalene (h = 3) or phenalene with one, 
two or three catacondesed fragment(s) annelated to it. Figure 7 shows some such 
hexanimals; in all these examples, the species can be circumscribed arbitrarily 

+5 
Fig. 7. Hexanimals  with one internal vertex each. 

many times. Equations (8) and (9) assume particularly simple forms in this case; 
the latter one becomes 
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5.3. TRIANGULENE HOMOLOGUES 

The triangulene homologues T (see fig. 8) consist of the trivial case  c 6 n  6 

benzene, C13H 9 phenalene, C22H12 triangulene, C33H15, C46H18 . . . . .  These hexanimals 
have the A values 0, 1, 2, 3, 4 . . . . .  as was pointed out by Gutman [28]. Here, A 
(the color excess [9]) is the absolute magnitude of the difference between the 

C6H 6 C13H9 C22H12 

C69H21 
C142H30 

Fig. 8. The smallest extremal hexanimals for A = 0, 1, 2, 3 and 4. 
They have h = 1, 3, 6, 25 and 57, respectively. 

numbers of black and white (or starred and unstarred) vertices. It is reasonable to 
believe, with support from previous findings [29], that the smallest hexanimal with 
a given A is T (for A < 2) or x-circum-T (for A > 2). Although this property is not 
rigorously proved, it is of interest to determine the x values (minimum number of 
circumscribings) for the series of homologues under consideration. 

For a k-times circumscribed triangulene homologue, viz. k-circum-T, it was 
found that 

h k = 3k(k  + A + 1) + } (A + 1) (A + 2), (11) 

(h i )  k = 6k(k  + A) + A 2. (12) 
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Herefrom, the (h, ni) pair is readily obtained by inserting k = 0. The two parameters 
were inserted into eq. (9), with the result: 

x = [ (3AE-6A+7)J. (13) 

Figure 8 includes the examples for A = 3 and A = 4. According to (13), the 
extremal hexanimals are obtained by circumscribing the triangulene homologues 
(shaded areas in the figure) once (x = 1) and twice (x = 2), respectively. 

This problem was considered (from a slightly different point of  view) in a 
paper by Dias [30], which contains many interesting aspects on constant-isomer 
series of  hexanimals. Four of  the formulas for constant-isomer series, which he has 
reported, viz. C69H21, C142H30, C325H45 and C706H66, should conform to the cases 
A = 3, 4, 5 and 6, respectively, in our analysis. To be precise, the formulas, say 
(nx; sx), should pertain to x-circum-T for the given A values. It was found that 

( n x ; S x ) = ( A  z + 6 ( x + l ) ( x + l + A ) ;  6 ( x + l ) + 3 A ) ,  (14) 

where x might be inserted from (13). Equation (14) confirms the first three of  the 
Dias [30] formulas, but we believe that the last one is in error; we find it should 
be C582H6o . 
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